
International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Anytime A* Algorithm – An Extension to A*
Algorithm

Disha Sharma, Sanjay Kumar Dubey

 Abstract— A* algorithm is a powerful tool that can be used to solve a large number of different problems. However, its computation cost

 may be unaffordable for some applications. To ease this problem and to adopt different application contexts, various extensions of A* have

 been anticipated. The main extension to the A* algorithm is Anytime Algorithm. This approach find improved solution as well as improve a

 bound on the sub optimality of the current solution.

 Anytime A* Algorithm is algorithms those can optimize the memory and time resources and are considered best for A* algorithm. When

the time available to solve a search problem is limited or uncertain, this creates an anytime heuristic search algorithm that allows a flexible

substitution between search time and solution quality. They can generate a fast, non-optimal solution and then refine it to the optimal if

more time is provided. Some applications like Real Time Strategy (RTS) games have applied these algorithms to find a fast solution that

will help the algorithm to prune some paths during the subsequent computation that will find the optimal solution.

Index Terms— A*, AI Algorithms, Anytime Algorithms, Artificial Intelligence, Best First Search, Heuritics Search, Optimality

—————————— ——————————

1 INTRODUCTION

A* is probably one of the most well known Artificial Intel-
ligence Algorithms[1, 20]. Its objective is to find the shortest
path in a graph from a node x-start to a node x-goal[13]. It
combines the features of uniform-cost search and pure heu-
ristic search to efficiently compute optimal solutions. As a
best-first heuristic search, it employs a function f that guides
the selection of the next node that will be expanded[10,18].
The order in which nodes are expanded is determined by the
node evaluation function f(n) = g(n) + h(n), where g(n) is the
cost of the best path currently known from the start node to
node n, and h(n) is a heuristic estimated cost to reach from
this current node to the goal node[15]. This estimation of the
cost is determined using the problem specific information
about the environment that the A* algorithm has. The behav-
ior of A* depends in large part on the heuristic h(n) that
guides the search. If h(n) is admissible, that is, if it never
overestimates h*(n), and if nodes are expanded in order of
f(n), then the first goal node selected for expansion is guaran-
teed to be optimal.

 A heuristic is said to be consistent if h(n) ≤ c(n,n’) +
h(n’) for all n and n’ where c(n,n’) is the cost of an edge from
node n to node n’[4]. If h(n) is consistent and nodes are ex-
panded in order of f(n), the g-cost of a node is guaranteed to
be optimal when the node is selected for expansion, and a
node is never expanded more than once. If h(n) is not con-
sistent, it is possible for A* to find a better path to a node af-
ter the node is expanded.

 To prove that A* algorithm is optimal when using
admissible heuristic, let us suppose sG as a suboptimal goal
node and g(sG) as the exact cost of reaching from the root
node to the current suboptimal goal node sG[14,19]. Also
consider h(sG) as zero because for every goal node the esti-
mated cost is always zero and let C* is the cost of the optimal
path from the root node to the real goal node then

f(sG) = g(sG) + h(sG) = g(sG) > C* (i)

The cost of the optimal path from root node to the subop-

timal goal node sG is larger then the cost of the optimal path
from root node to the real node[14,20]. Thus the suboptimal
goal node sG will never be taken in as a goal.

 Also suppose that node n as a node on the optimal
path and if heuristic function h(n) is admissible, then we
know

 f(n) = g(n) + h(n) ≤ C* (ii)

So, we can say that from (i) and (ii)

f(n) ≤ C* < f(sG)

A* Algorithm will never selected sG as a goal node because
its f-cost is greater than the cost of the real goal node rather A*
algorithm will select node n.

2 LITERATURE REVIEW

Peter Hart, Nils Nilsson and Bertram Raphael of Stanford
Research Institute(now SRI International) first described the
algorithm in 1968[19]. It is an extension of Edsger Dijkstra’s
1959 algorithm. In 1968 Nils Nilsson suggested a heuristic
approach for Shakey the Robot to navigate through a room
containing obstacles. This path-finding algorithm, called A1,
was a faster version of the then best known formal ap-
proach, Dijkstra's algorithm, for finding shortest paths in
graphs. Bertram Raphael suggested some significant im-
provements upon this algorithm, calling the revised version
A2. Then Peter E. Hart introduced an argument that estab-
lished A2, with only minor changes, to be the best possible
algorithm for finding shortest paths[19]. Hart, Nilsson and
Raphael then jointly developed a proof that the revised A2
algorithm was optimal for finding shortest paths under cer-
tain well-defined conditions. They thus named the new algo-
rithm in Kleene star syntax to be the algorithm that starts
with A and includes all possible version numbers or A*.

 The A* algorithm, stripped of all the code, is fairly
simple. There are two sets, OPEN and CLOSED. The OPEN
set contains those nodes that are candidates for examining.
Initially, the OPEN set contains just one element: the starting
position. The CLOSED set contains those nodes that have al-

http://en.wikipedia.org/wiki/Shakey_the_Robot
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Kleene_star

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 2

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

ready been examined. Initially, the CLOSED set is empty.
Graphically, the OPEN set is the “frontier” and the CLOSED
set is the “interior” of the visited areas. Each node also keeps
a pointer to its parent node so that we can determine how it
was found.

 There is a main loop that repeatedly pulls out the best
node n in OPEN (the node with the lowest f value) and exam-
ines it. If n is the goal, then we’re done. Otherwise, node n is
removed from OPEN and added to CLOSED. Then, its neigh-
bors n' are examined. A neighbor that is in CLOSED has al-
ready been seen, so we don’t need to look at it (*). A neighbor
that is in OPEN is scheduled to be looked at, so we don’t need
to look at it now (*). Otherwise, we add it to OPEN, with its
parent set to n. The path cost to n', g(n'), will be set to g(n) +
movement cost(n, n').

2.1 Existing Study

The A* algorithm is a flexible cost based algorithm, which
can help satisfy all our requirements[5]. It is a best first
search algorithm that finds the least costly path from an ini-
tial configuration to a final configuration. It uses an exact +
estimate cost heuristic function. The cost function must be
admissible i.e. the estimated cost must be less than the actual
cost, this produce computationally optimal results.

 Apart from using the evaluation function f(n), A* al-
gorithm also uses two lists, Open list and Close list for the
systematic search of the search space[8]. Close list stores all
those nodes that are already been selected by the A* algo-
rithm to be checked as the goal node and the Open list stores
all the successors of those nodes in the Close list. These nodes
in the Open list are sorted in an increasing order of their f-
costs. The node with the least f-cost is selected next by the A*
algorithm. So evaluation function f(n) is the main driving
force that guides the A* search in the search space. Imple-
mentation of A* algorithm in the form of pseudo code is
shown below:

 public void A*(Node Root, Node Goal)
 {
 if(Root==Goal)
 {
 goalSucc=true;
 return;
 }
 else
 {
 closeList.InsertNode(Root);
 Node[] successors = ExpandNode(Root);
 foreach(Node s in successor)
 {
 if(s==closeList[Item])
 {
 is_in_close = true;
 if(s.fcost <= closeList[Item].fcost)
 then update the item with the new

fcost
 }
 elseif(s == openList[Item])

 {
 is_in_open = true;
 if(s.fcost <= openList[Item].fcost)
 the update the item with the new fcost
 }
 elseif(is_in_close == false && is_in_open ==

false)
 openList.InsertNode(s);
 }
 openList.Sort();
 Node bestNode = open-

List.RemoveFirstNode();
 While(goalSucc == false)
 A*(bestNode, Goal);
 }
 }

 The most essential part of the A* algorithm is a

good heuristic estimate function[12]. This can improve the
efficiency and performance of the algorithm and depends on
the specific state space being explored. Inspite of being ex-
tensively used, A* may present problems in some situations.

i. Firstly, depending on the characteristics of the
problem and heuristics used, its cost can be
prohibitive.

ii. Secondly, there are some contexts such as dy-
namic environments or real-time searches may
require adaptations in the original algo-
rithm[9].

 According to Pearl and Korf the main shortcoming of A*
and any best-first search, is its memory requirement. Because
the number of nodes expanded can be exponential in the
length of the optimal path. A* is space limited[20]. For large
search space, A* will run out of memory.

2.2 Proposed Study

 There are several extensions to the A* algorithm in past
few years out of which one of the extension is Anytime A*
Algorithm[2].

 The main structure of our implemented A* algorithm re-
mains the same while converting it into anytime, because the
basic working of the A* algorithm remains the same. The most
important property of anytime algorithms is that, they can be
stopped and then can be restarted at any time. So in order to
make our implemented A* algorithm anytime we simply need
to add a time constraint or a time limit to our algorithm. When
the A* algorithm hits this limit it should be stopped and then
restarted if desirable with new time limit. To avoid changes in
our implemented A* algorithm, we implement a sub- module
class called as control manager class (ctr_manager class), which
takes care of the time limit and the stopping and restarting of
the A* algorithm. Implementation of this class in the form of
pseudo code is :

 public class ctr_manager
 {
 bool is_First = true;
 Node new_Solution = null;

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 3

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

 public void run_A*()
 {
 thread.sleep(sleep_Time);
 goalSucc = true;
 }
 public void thread_AA*(int sleep_Time,

Node rN, Node gN)
 {
 thread_a = new thread();
 if(is_First)
 {
 new_Solution = rN;
 thread.Start(run_A*);
 A*(rN, gN);
 }
 elseif(rN == new_Solution)
 {
 // keep all the states intact because

algorithm needs more time
 // to find a better solution
 thread.Start(run_A*);
 A*(rN, gN);
 }
 elseif(rN != new_Solution)
 {
 // algorithm finds an improve solu-

tion, clears all the previous states
 // to allow algorithm a fresh start
 closeList.RemoveAll();
 openList.RemoveAll();
 thread.Start(run_A*);
 A*(new_Solution, gN);
 }

 }

 }

3 ANALYSIS

The complexity analysis of A* and related algorithms de-
pends primarily on the quality of the heuristic function and
has been the subject of a large body of research[3]. The time
complexity of A* depends on the heuristic. In the worst case,
the number of nodes expanded is exponential in the length of
the solution (the shortest path), but it is polynomial when the
search space is a tree, there is a single goal state, and the heu-
ristic function h meets the following condition[16]:

| h(x) – h*(x) | = O(log h*(x))
where is the optimal heuristic, the exact cost to get

from x to the goal. In other words, the error of h will not
grow faster than the logarithm of the “perfect heuristic”
 that returns the true distance from x to the goal[5,6].

 A* algorithm can be easily declare as Anytime A* al-
gorithm only when it must satisfy all properties of Anytime
algorithms[11]. There are few such properties on the basis of
which we can judge are as follows :

i. Measurable quality: This property means that
the quality of the solution that an anytime
algorithm returns, should be measureable
and represent able in some way. In our
implemented anytime A* algorithm we
measure this quality of the solution in
terms of its straight line distance from the
goal node.

ii. Mono-tonicity: This property means that the
quality of the solution that an anytime al-
gorithm returns, should increases with in-
crease in computational time and quality
of the input.

iii. Consistency: According to this property the
quality of the solution of an anytime algo-
rithm is connected with computational
time it have and the quality of the input.

iv. Interrupt-ability: This property means that
for an algorithm to be declared as anytime
we should be able to stop it at any time
and it should provides us with some solu-
tion. Our implemented anytime A* algo-
rithm is stoppable at any time and it will
return a solution whenever it stops.

v. Preempt-ability: According to this property
an anytime algorithm can be stopped and
can also be restarted again with minimal
overhead.

If the above defined all properties are satisfied then the an-

ytime A* algorithm shows a high performance.

4 CONCLUSION

A* (a-star) is a well known best - first search algorithm
that has been applied to the solution of different problems. We
have presented a simple approach for converting a heuristic
search algorithm such as A* into an anytime algorithm that
offers a tradeoff between search time and solution quality. The
approach uses a control manager class which takes care of the
time limit and the stopping and restarting of the A* algorithm
to find an initial, possibly suboptimal solution, and then con-
tinues to search for improved solutions until meeting to a
provably optimal solution. It also bounds the sub-optimality
of the currently available solution.

 The simplicity of the approach makes it very easy to
use. It is also widely applicable. Not only can it be used with
other search algorithms that explore nodes in best-first order.
Thus, we conclude that anytime heuristic search provides an
attractive approach to challenging search problems, especially
when the time available to find a solution is limited or uncer-
tain.

REFERENCES

[1] Koenig, S.:Dynamic fringe-saving A* (june 2010) retrieved 7, 2010

from http://idm-lab.org/bib/abstracts,koen09e.html

[2] S.Zilberstein, (1996), “Using Anytime Algorithms in Intelligent Sys-

tems”, AI Magazine, Volume 17, No. 3, page 73-83

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Exponential_time
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Logarithm

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 4

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

[3] Korf, R. E., Reid, M.: Complexity analysis of admissible heuristic

search. In: Proceedings of the National Conference on Artificial In-

tellligence- AAAI (1998)

[4] Koenig, S., Likhachev, M, Lice, Y., Furcy, D.: Incremental heuristic

search in AI, AI Magazine, Volume 25, No. 2, 2004, page 99-112

[5] Pearl, Judea (1984), Heuristics: Intelligent Search Strategies for com-

puter Problem solving, Addison-Wesley, ISBN 0-201-5564-5

[6] Russell, S.J: Norvig, (2003), Artificial Intelligence: A Modern Ap-

proach, N,J: Prentice Hall, page 97-104, ISBN 0-13-790395-2

[7] A. Gyorgy and L. Kocsis(2011) “Efficient Multi-Start Strategies for

Local Search Algorithms”, Journal of Artificial Intelligence Research,

Voulme 41, page 407-444

[8] N. Fu, H.c. Lau, P. Varakantham and F. Xiao (2012) ”Robust Local

Search for Solving RCPSP/max with Durational Uncertainity”, Jour-

nal of Artificial Intelligence Research, Vol;ume 43, page 43-86

[9] V. Bulitko, Y. Bjornsson and R. Lawrence (2010) “ Case-Based Sub-

goaling in Real Time Heuristic Search for Video Game Pathfinding”,

Journal of Artificial Intelligence Research, Volume 39, pages 269-300

[10] T.Nurkkala, “Informed Search- Lecture 4”, Department of Computer

Science, university of Minnesota

[11] W. Kywe, D. Fujiwara and K. Murakarni, “ Scheduling of image

Orocessing Using Anytime Algorithm for Real Time System”, IEEE –

International Conference on Pattern Recognition, 2006

[12] G. Pesant, C. Quimper and A. Zanarini (2012), “ Counting Based

Search: Branching Heuristics for Constraint Satisfaction Problem”,

Journal of Artificial Intelligence Research, Volume 43, page 173-210)

[13] Bolc, L., and J. Cytowski, Search Methods for Artificial Intelligence,

Academic Press, London, 1992

[14] Dechter, R., and J. Pearl, Generalized best-first search strategies and

the optimality of A*, Journal of the Association for Computing Ma-

chinery, Volume 32, No. 3, July 1985, page 5050-536

[15] P. F. Felzenszwalb and D. McAllester (2007),” The Generalized A*

Architecture”, Voulme 29, page 153-190

[16] Korf, R. E., Space-Efficient Search Algorithms, Computing Surveys,

Volume 27, No. 3, Sept., 1995, page 337-339

[17] Bonent, B., & Geffner, H.(2001), Planning as heuristic search, Journal

of Artifical Intelligence, Volume 129, No. 1, page 5-33

[18] Hansen, E., and Zilberstaein, S. (2001), LAO*: A heuristic search algo-

rithm that finds solution with loops, Journal of Artificial Intelligence,

Volume 129, No. 2, page 35-62

[19] Hart, P.E.: Nilsson, N. J.; Raphad, B.(1968). “A Formal Basis for the

Heuristic determination of Minimum Cost Paths”, IEEE Transactions

on Systems Science and Cybernatics SSC4 4, No. 2: page 100-107, doi:

10.1109/TSSC.1968.30013C

[20] SreeKanth Reddy Kallem, “ Artificial Intelligence Algorithms”, IOSR

Journal of Computer Engineering(IOSRJCE), Voulme 6, Issue 3, Sep-

Oct. 2012, page 1-8

————————————————

 Disha Sharma is currently pursuing masters degree program in Computer
Science and Engineering in Amity School of Engineering & Technology,
Amity University, Noida, India. E-mail: disha.24sharma@gmail.com

 Sanjay Kumar Dubey, Assistant Professor, Amity School of Engineering &
Technology, Amity University, Noida, India.. E-mail: skdubey1@amity.edu

